JOURNAL OF AIRCRAFT
Vol. 33, No. 5, September—October 1996

Unsteady Aerodynamics of a Flapped Airfoil
in Subsonic Flow by Indicial Concepts

Nagarajan Hariharan* and J. Gordon Leishmant
University of Maryland, College Park, Maryland 20742

An approach based on indicial concepts is described to model the unsteady airloads on a thin airfoil
in subsonic compressible flow caused by the arbitrary motion of a trailing-edge flap. Exact indicial aero-
dynamic responses at small values of time as a result of flap deflection and angular deflection rate about
the flap hinge are obtained from linear unsteady subsonic theory in conjunction with the aerodynamic
reverse flow theorems. Using the known exact initial (piston theory) and asymptotic values of the airloads,
along with an assumed analytic form for the indicial functions, these exact results are used to help obtain
complete approximations for the respective indicial responses. The airloads from arbitrary flap motion
in subsonic flow are subsequently obtained in state-space form. Validation of the method is conducted
with experimental data for time-dependent flap motions.

Nomenclature
A; = coefficients of indicial functions
a = pitch axis location, semichords
a, = sonic velocity, ms™'
b = semichord, ¢/2, m
b; = exponents of indicial functions
Cy = pressure drag coefficient
Cr = flap force coefficient
Cu = flap hinge moment coefficient
Cu = moment coefficient about one-quarter-chord
Cy = normal force coefficient
C, = pressure coefficient
Cs = leading-edge suction force coefficient
c = airfoil chord, 26, m
e = flap hinge location, semichords
F\—Fy = geometric constants for flap
f = flap oscillation frequency
H = hinge moment, N m
K = noncirculatory time constant
M = Mach number
N = normal force, N
S = distance traveled in semichords, 2V#/c
T = noncirculatory time constant in S time
T = noncirculatory time constant in 7 time
T; = basic noncirculatory time constant, c/a;
t = time, s
7 = nondimensional time
1 = freestream velocity, ms™’
X = airfoil chord axis (origin at midchord), m
z = state variable
«@ = angle of attack, rad
B = Glauert compressibility factor, /1 — M*
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A = incremental quantity

8 = flap deflection angle, rad

en, &n, &y = flap effectiveness factors

n = leading-edge suction force recovery factor
fo) = indicial response function
Subscripts

eff = effective component

H = hinge moment component

M = moment component

N = normal force component

gs = quasisteady component

a = angle-of-attack component

141 = pitch rate component

b = flap deflection angle component
o = flap deflection rate component
Superscripts

c = circulatory component

f = flap component

i = noncirculatory (impulsive) component

Introduction

HERE have been several applications of a wing-based

trailing-edge flap applied to gust alleviation or flutter sup-
pression on fixed-wing aircraft."* However, for helicopters the
use of flaps on the rotor blades has, so far at least, found use
only for collective and one/revolution cyclic pitch control. To-
day, with the advent of lightweight smart materials—structures
and high bandwidth active control technologies, it is now be-
coming increasingly feasible to use compliant airfoil surfaces
or trailing-edge mounted flaps on the rotor blades as a means
of individually controlling the aerodynamic environment on
each blade, and at frequencies much higher than one/revolu-
tion. This offers tremendous possibilities for reducing blade
loads and vibration levels.’

Recent results from smart structures and materials research
have shown that individual blade lift control is possible on a
Froude-scale helicopter rotor by means of a small outboard
trailing-edge flap controlled by piezoceramic actuators.* In an-
other experiment, a mechanically actuated flap system pro-
vided evidence that the flap can help reduce rotor noise.®
Parallel theoretical studies of these problems using advanced
helicopter rotor models®’ require the use of a suitably formu-
lated time-domain theory for the blade section aerodynamics.
An unsteady aerodynamic theory is required, firstly because
the local actuation rate may be very high, and secondly, be-
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cause high-resolution predictions of acoustics need to be made.
In addition, since the local effective reduced frequencies based
on active camber motion may exceed unity, incompressible
assumptions may no longer be adequate.

The objective of this article is to describe the development
of an unsteady aerodynamic theory for the effects of a trailing-
edge flap based on indicial function concepts. The work is an
extension to that originally reported in Ref. 8. The results can
be generalized to any form of chordwise camber, but the anal-
ysis presented here is restricted only to the trailing-edge flap
problem. The method is formulated in the spirit of classical
unsteady subsonic airfoil theory, where the assumptions are
that the problem is governed by the linearized partial differ-
ential equation and linearized boundary conditions. The two-
dimensional solution described in this article is assumed to be
representative of the environment encountered by a rotor blade
element; the effects of the trailed wake being accounted for
by means of an additional inflow angle in the conventional
way. Furthermore, it will be assumed that the freestream ve-
locity or Mach number is quasisteady, although the results can
also be extended to time-varying freestreams, and the proce-
dures are outlined in Ref. 9. Finally, the method reported in
this article is developed in a computational form suitable for
use in routine rotor loads and aeroelasticity applications, and
therefore, includes some additional assumptions and approxi-
mations to make the method practical.

Methodology

Incompressible Flow

The prediction of unsteady lift, airfoil pitching moment, and
the hinge moment on an airfoil for a harmonic flap oscillation
in incompressible flow has been studied.”””"® The complete
expressions for the unsteady lift in the frequency domain, from
both airfoil motion and flap oscillation, were systematically
obtained in terms of contributions from noncirculatory (appar-
ent mass) and circulatory terms (shed-wake effects). Validation
of the incompressible unsteady thin airfoil theory with a flap
has been made by Drescher."”

Numerical methods for the unsteady aerodynamics caused
from arbitrary motion can be derived by the use of Duhamel
superposition with the Wagner indicial (step) response. The
Wagner function, like the Theodorsen function, is known ex-
actly. However, for practical evaluations of the aerodynamics
an exponential approximation is usually used since this facil-
itates straightforward manipulation by Laplace transforms.'*
Using this convenient exponential approximation the aerody-
namic transfer functions can be obtained, and the unsteady
forces and moments caused by arbitrary motion can be cast
into state—space'™'® or one-step recursive forms.'”'*

For arbitrary trailing-edge flap motion the airloads can be
written in a similar numerical form, with the total airloads
found by linear superposition. The complete aerodynamic sys-
tem for the airfoil and flap in an incompressible flow can be
represented by a set of four aerodynamic states.*'**® Although
it is convenient for some purposes to separate out the circu-
latory lift from airfoil motion to that from the flap motion, in
a practical application their net effects can be combined so
that, in fact, only two states are required to model the circu-
latory part of the unsteady airloads in incompressible flow. The
inclusion of gust effects, however, adds two more states be-
cause a different indicial function applies.

Subsonic Flow

There are no equivalent exact results analogous to Theo-
dorsen’s theory or Wagner’s solution for the unsteady subsonic
compressible flow case. Under these conditions both the cir-
culatory and the noncirculatory loads have time—history ef-
fects; unlike incompressible flow the noncirculatory loads are
no longer proportional to the instantaneous airfoil and flap dis-
placements since they are related to the propagation and re-
flection of wave disturbances. This means the noncirculatory

NA

Fig. 1 Nomenclature for thin airfoil with a trailing-edge flap.

terms must also be described by aerodynamic states. A solution
starting from the indicial response is desired for the subsonic
problem because it is known that this permits a generalization
to arbitrary forcing by means of Duhamel superposition. How-
ever, while the initial (S = 0) and final (§ = «) values of the
indicial response are known exactly in linearized subsonic
flow, the intermediate behavior is known exactly only for very
limited values of time.

Initial and Final Values of Indicial Response

As explained by Lomax”' the initial airloading on an airfoil
operating in a compressible flow in response to a step change
in the boundary condition is associated with the acoustic wave
system created by the initial perturbation. The airloading at
time zero (S = 0) can be computed directly using piston theory,
and the results for the airfoil case have been given previ-
ously."**~* For indicial flap motion about a hinge located at
eb (see Fig. 1) the initial airloads are

ACy(S =0, M) = [2(1 — e)/M]AS )
ACy(S =0, M) = [(1 — e)*2M]A(Sc/V) )
AC,(S=0,M)=—[(1 — e)2 + e)2M]AS (3)

AC (S =0, M)y = —(1/12M)[(1 + &)

— (12¢ — 4) — 21 — )*]A(B/V) (4)
AC,(S =0, M) = —[(1 — e)’/2M]AS 5)
ACL(S =0, M) = —[(1 — ¢)'/6M]A(8c/V) 6)

These results are valid for any M, but only at the instant in
time when the perturbation (8 or éc/V) is applied.

The final values of the indicial response are given by the
usual linearized subsonic theory, so that for indicial flap dis-
placements and rates

= 2

ACy(S == M) = =2 A )
Fu 8¢

ACy(S = o, M):EA <V> 8)
F4 + F]O

ACy (S =, M) = ——23— Ab )

AC(S =, M) = _2F Z2F; = Qe+ DF + Fu (g)

88 v
(10)
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(F5 - F4F10) + FpFyp

AC,(S = o, M) = — nf As (1D
— > __Fn(Flz_th) _6£
AC, (S =2 M) = ra— A <v> (12)

where the F coefficients are defined by Theodorsen'' and are
also listed in Refs. 19 and 20.

Approximations to Indicial Airloads

The intermediate indicial behavior between S = 0 and § =
o0 must now be defined. Following Ref. 8, the indicial lift,
airfoill moment, and hinge moment coefficients as a result of
impulsive flap deflection can be written in general functional
form as

AC,(S. M, e) = [?—(—1% B (S, M, e)

+ 2% B (S, M, e)] A (13)
ACy(S, M, ) = [(1—2TML) Bu:(S, M, e)
Fi o, bc
* 55 BulS M. e)] A (v) (14)
AC(S. M. &) = — [9_—;);4“—‘3) B, M, &)
Fy, + Fio
+ —23— b (S, M, e)] Ad (15)

AC, (S, M, e) = ~{12174 [(1 + ) ~ (12¢ — 4)

- % (1= 6)2] (S, M, e)

2F, — 2F, — Qe + 1)F, + F\, . &
+ 83 b, (S. M, e)} A < V>
(16)
1 —ef
AC, (S, M, e) = —~[(~‘2M—6)‘ bu(S. M, e)
L = BFw) b FeFa oo, e)] A5 a7
278 ’
1 — e)
ACy(S, M, ) = —[% us(S, M, e)
Fiu(F, — F)) SC
Dbl = 79 g b 1
F e s M, e>] A <V) (18)

where the indicial response functions ¢y, &y, P, Pry Doy
D Puryp urzr Py Drayr D, and Py, represent the intermediate
behavior of the respective indicial airloads between S = 0 and
S = oo,

During the time between the initial noncirculatory domi-
nated loading until the final circulatory dominated loading is
obtained, the flow adjustments are very complex, and involve
the simultaneous creation of circulation as well as the propa-
gation and reflection of pressure wave disturbances. Mazel-
sky®* showed that the noncirculatory lift in subsonic compress-

ible flow decays very rapidly and almost exponentially from
the initial (piston theory) values. The circulatory part of the
indicial response accounts for the influence of the shed wake,
and it has been shown in Refs. 22 and 23 that this part of the
indicial response caused by changes in airfoil angle of attack
¢, can be approximated by

N
GUS, M) = 1 — O A exp(=bfS), D A=1, b>0
i=1

(19)

The scaling of this function with respect to Mach number has
been previously justified from experiments*?** and is simply
a manifestation of the fact that the aerodynamic lag effects
caused by the wake become larger with increasing Mach num-
ber. The coefficients A, and b; have been derived using both
exact linear theory and experimental data in the frequency do-
main.” Note further, that analogous to the incompressible case,
in linearized subsonic flow the circulatory lift lag also does
not depend on the airfoil boundary conditions. This result
was examined in some detail for the subsonic case by Mazel-
sky.”**” Therefore, for all the circulatory lift terms

(S, M) = &, (S, M, a) = (S, M, &) = ¢y (S, M, )  (20)

Since the circulatory loads from the shed wake act at the
aerodynamic center (which is also the one-quarter-chord point
in linear theory). the indicial moments build very rapidly to
their steady-state (or quasisteady) values. It can be assumed
that

by, = b, =1 — exp(—bs8°S) D

Again, the time constant b; has been obtained based on ex-
perimental measurements in the frequency domain that have
been used to relate back to the assumed form of the indicial
functions.'®

The hinge moment is dominated by the quasisteady terms,
therefore, it can be assumed that

G (S, M) = (S, M) = ¢, (S. M, e) = $(S. M. &) (22)

For indicial flap motion, exponential decays can also be as-
sumed giving

AC\(S, M, e) = g%‘;_e) G (S, M, e)AS
21 — o) g
==y P [T,Nﬁ(M’ 6)] AS  (23)
| - ey b
ACH(S, M, e) = 2Me) Bi(S. M. )A <7>

(-e -S 8
o P [T;ﬁ(M, e)] A (v) 29

ACH (8. M, 0 = — =02 41 (5, 1, 05
__U-eete [_“5_] A5 25
2M Ti(M, o)
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ACM5(SMe)— ! [(1+e) —(12e—4)——(1—e)]

X (S, M, e)A (?f)

|:(1+e) —(12e—4)-——(l —e)]

12M
=S ¢
X exp [-_T,{%-(M, e)] A <7> (26)
CinlS. M, &) = 97_—‘3)— BolS, M, )AS
_a-= e -S
=TT exp (——_TAS(M, e)) As (27
a-e

, . ¢
ACy(S, M, &) = == (S, M. ) <7>

-e -S &
oM T (Thé(M, e)) A (V) @8

where T3 (M), Ty (M), Ty (M), TryM), Ty (M), and T;;,(M)
are Mach number dependent time constants.

Exact Subsonic Linear Theory

The previous noncirculatory time constants can be evaluated
with the aid of exact solutions for the indicial airfoil response.
Lomax et al.”’ and Lomax® obtained theoretical results using
a form of the wave-equation for the indicial responses caused
from step changes in airfoil AOA and pitch rate. The mathe-
matical calculations are somewhat complex, and solutions can
be obtained only for less than one semichord length of airfoil
travel, but this is still sufficient to define the initial behavior
of the indicial response.

The exact solution for the chordwise pressure on an airfoil
undergoing a unit step change in AOA is™'

. a 8 [T —x
ACHx, Ty =R <7r(] 0 i T »

4 { . [f(l + M) — 2(c ~ x)]
+ —— 4 cos A
™ t(1x)

Q- M)

| x i - M)
— cos [ T ]}) (29)

Also, the exact solution for the chordwise pressure on an air-
foil undergoing a unit step change in pitch rate (pitching about
the leading edge) is

ACx, 1) =R [ <\/ f = x)Mi+ x) + 3((114:1{7))
G-
M+ 0 \/(c Mt XN + x c)
1. o | FQ+ M)~ 2(c — x)
+ > (Mt + x) {cos [ M1 = ]

Ll -m
cos [——-———-——f(l D ]})] (30)

where both equations are valid for the short period 0 = f <
c/(1 + M). Note that R refers to the real part, and in these
particular equations x is measured from the airfoil leading
edge. The resulting lift on the airfoil can be obtained by in-
tegration, and the result transformed to the § domain by mak-
ing use of the result S = 2M7 (Ref. 21).

Reverse Flow Theorems

The indicial responses from the impulsive motion of a trail-
ing-edge flap are difficult to obtain directly but can be con-
veniently obtained using Eq. (29) with the aid of the reverse
flow relations.?** If one is only interested in the total lift and
moment, it appears that this approach furnishes a rigorous way
of treating the indicial flap problem exactly. The main advan-
tage of the reverse flow theorems is that they permit a solution
to the airloads for any imposed camber using only the flat-
plate solution.

Consider first the indicial lift because of 8, which produces
a uniform perturbation velocity over the flap. It can be shown
by the reverse flow theorems that the lift in steady or indicial
motion per unit angle of flap deflection is equal to the lift
per unit AOA on the corresponding portion of a flat-plate air-
foil moving in the reverse direction. Consider a flapped por-
tion of one airfoil deflected at an angle 8, and the remainder
of the airfoil is a flat plate with its surface parallel to the
freestream. Let a second airfoil be a flat-plate airfoil at o, so
that

_ )& onthe flap a, = const
«= {0 elsewhere @D

Then the reverse flow theorem gives

) Acg,
ST SR Y £ 32)
5 fap a, c

where AC; is given by Eq. (29) and the subscript 2 refers to
the second airfoil. It was shown by Leishman® that in the short
time interval 0 < § = M(1 — e)/(1 + M) the indicial lift
caused by the flap deflection angle is given exactly by

ACY(S) = [2(1 — e)/MI{1 — [(1 — M)SI2M(1 — €)]}AS
(33)

From this result for the indicial flap response in subsonic
flow, the time constants for the noncirculatory parts of the
indicial response approximations can be obtained by equating
the sum of the time derivatives of the approximate solutions
to the corresponding time derivative of the exact solutions.
Based on this approach, which was first outlined for the lift
from flap deflection and flap rate terms in Ref. 23, the non-
circulatory time constants for lift from flap deflection can be
expressed as

T (M, ¢) = (;V) T = (1 — e [(1 - M)

2 -1
+ 2FBM® D, A,.b,] (f)
i=1

s

= Ky (M, T, (34)

Since the indicial lift response to flap deflection is now de-
fined, it is plotted in Fig. 2. In Fig. 2a the lift is shown for
small values of time where the linear theory is also valid, and
Fig. 2b shows the response for extended values of time. Note
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that these indicial airloads are quite different to the incom-
pressible results, which all exhibit an infinite pulse (Dirac delta
function) at S = 0.

A similar approach can be used to find the initial behavior
of the indicial response caused from the flap rate 8, i.e., an-
gular rotation about the hinge. The local perturbation velocity
because of this motion is linear over the flap and zero at the
hinge axis. By means of the reverse flow relations, it can be
shown that the lift on one airfoil as a result of flap rate about
the hinge is equal to the integral over the airfoil of the product
of the perturbation in local AOA induced by the flap rate mo-
tion and the loading per unit AOA at the corresponding point
of a second airfoil comprising a flat plate moving in the reverse
direction. Therefore,

e
Cu (1) _ 1l —e}y x d x
& - fap o 2 c c

vV

(35

In the short time interval 0 = § < M(1 — e)/(1 + M), it can
be shown by integration that the indicial lift because of flap
rate varies as

(L= M) = oS
M

—_ 2 3
S )S ] A (%) (36)

1
ACy(S) = M l:(l ~ ey

By following the same procedure as for the lift where the
gradients are matched at S = 0, then the time constant can be
written as

(c) , (1-@2[
TwvM, o) =) T, =——F— (1 = M)(1 — o

2V 2
2 -1
+ FupM* Y, A.b.-] <£)
=1 as
= Ky(M, e)T, 37

The results for the indicial lift from the flap rate are plotted in
Fig. 3 for short and extended values of time.

Another set of reverse flow theorems can be used to find
the pitching moment on the airfoil from the flap motion. It can
be shown that the pitching moment on one airfoil because of
flap deflection is equal to the integral over the airfoil of the
product of the local AOA induced by the flap deflection motion
and the loading per unit pitch rate at the corresponding point
of a second airfoil comprising of a flat plate moving in the
reverse direction. Therefore,

ACE (’% t>
tap o c

where the second term on the right-hand side (RHS) of the
previous equation is from the difference in the axis locations
of the first and the second airfoils. It can be shown by inte-

4.0 - ) -
q i H F
[ T (R S S Approx, M = 0.3
g I S Exact, M=0.3 ]
z 30 \'».,. — = - Approx, M = 0.5
@ Tk —— Exact, M= 0.5
8 20 T
(9] S el .
e 1 5 TTTTem~wa s T,
(] -
:_; 1.0 !
g .
[¢]
2
0.0 . S, -
0 0.1 0.2 0.3 04 0.5
a) Distance traveled in semi-chords, S
5.0

1/
v

Normal force coefficient / rad.

1.0 —— Approx, M=0.3}..
----- Approx, M =0.5
0.0
0 5 10 15 20
b) Distance traveled in semi-chords, S

Fig. 2 Indicial lift because of flap displacement at M = 0.3 and
0.5: a) short values of time and b) for an extended time.

gration that in the short time interval 0 = § = M(1 — e)/
(1 + M) the indicial pitching moment about the one-quarter-
chord from the flap deflection angle is given by

AC,(S) = —(12M)H){(1 — &)(2 + e)
— [3(1 — M)2M1S — [(2 — M)2M]S*}A8 (39)

In this case, the noncirculatory time constant is
TuM, &) = (c/V)T, = (1 — &)2 + e)[3(1 — M)
+ 2(F, + Fo)BM*bs} '(cla,)
= Ky, (M, e)T; (40)

and the result for the indicial moment response from the dis-
placement of the flap is plotted in Fig. 4.

The reverse flow theorems show that the pitching moment
on one airfoil because of flap rate about the hinge is equal to
the integral over the airfoil of the product of the perturbation
in local AOA induced by the flap rate motion and the loading
per unit pitch rate at the corresponding point of the second
airfoil comprising a flat plate moving in the reverse direction.

Therefore,
) A, <’2 f)
Cu () 1-e x ¢ a(*
el 2 e e c
\% \%
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Fig. 3 Indicial lift because of flap rate at M = 0.3 and 0.5: a)
short values of time and b) for an extended time.

where the second term on the RHS of the previous equation
is from the difference in the axis locations of the first and the
second airfoils. It can be shown by integration that in the short
time interval 0 = § =< M(1 — ¢)/(1 + M) the indicial pitching
moment about the one-quarter-chord from the flap rate is given
exactly by

o 3 N et
AC(S) = D5 {(1 + e — (12¢ — 4) >
B [9(1 - M) — e)] <4 [3(2 - M) + 2e)] =
2M 4M
(1 —M'+amy | -
LT P

The time constant in this case is given by
Ty, (M, &) =(cl2V)T}; ={(1 + &)’ — (12¢ — 4)
— [3(1 — e)21}[9(1 — M)(1 — &)
+ 6[F, — Fy — (e + 0.5)F, + (F\,/2)18M*b;} ~\(cla,)
=Ky (M. )T, 43)

with the indicial moment response from the angular rotation
rate of the flap being plotted in Fig. 5.

Note that in the previous representation, no matter what the
actual values selected for the circulatory coefficients A,, b;, etc.,
the noncirculatory time constants always give the correct initial
behavior of the total indicial response as given by the exact
linear theory.

Recall that the reverse flow theorems apply to only total
forces and moments. Therefore, the exact values for the time—
history of the hinge moment (which involves partial integration
of the pressure distribution), cannot be found by using the

0.0
o
&
= -051
Qo
L2 IR
% -1.0 B B e
o / - e -
c . LT
g 15 et
g _‘;.;:"’ ————— Approx, M = 0.3
=3 A R T Exact, M=0.3
E -2.0 5 — —-Approx, M=0.5}]"T
2 —— Exact, M= 0.5
o i 1
25 o i ; ;
0 0.1 0.2 0.3 0.4 0.5
a) Distance traveled in semi-chords, S
0.0
o
o
= -05
2 F -
S (R ayeepeg ey g g
T 1.0,
Q
§
£ -15
[*]
&
._g -2.0 ——Approx, M = 0.3 |-+
£ 1 e Approx, M = 0.5
o ;
2.5 i
0 5 10 15
b) Distance traveled in semi-chords, S

Fig. 4 Indicial airfoil moment because of flap displacement at M
= 0.3 and 0.5: a) short values of time and b) for an extended time.

reverse flow theorems in the same manner. However, an alter-
nate expression, namely the airfoil moment about the hinge,
which is simply a translation of the airfoil moment from the
one-quarter-chord to the hinge, can be calculated. This in-
cludes the entire loading on the airfoil, whereas the hinge mo-
ment includes only the loading on the flap. At S = 0 the entire
loading on the airfoil is concentrated only on the flap, and so
the airfoil moment about the hinge is equal to the hinge mo-
ment. It is, therefore, justified in assuming that the hinge mo-
ment and the airfoil moment about the hinge will be ap-
proximately the same for small values of times after the
perturbation is applied. This assumption leads to

TuM, e) = 2m(1 — ey’[4m(l — M)(1 — e)
+ 4(Fs — F4F + F12F10)3M2b3]_1(6'/a:)
= (c2V)T}, = Ky (M, )T, 44

T.,M, e) = 2m(1 — &y’[6m(1 — M)(1 — e)°
+ 6F(Fi, — F4)BM2b3]_1(c/aX)
= (c2V)T},; = KM, )T, (45)

Results for the indicial flap hinge moment because of impul-
sive trailing-edge flap deflection and rate are shown in Fig. 6
for M = 0.3 and 0.5. Note that compared to the other indicial
responses, the hinge moments attain their steady-state values
much more quickly, and suggests that for most low- or me-
dium-frequency applications the hinge moment may be ade-
quately modeled by means of quasisteady theory.

Arbitrary Flap Motion

The indicial flap lift and moment responses obtained pre-
viously are solutions to specific forms of input motions, which
are only mathematically realizable. For any practical arbitrary



HARIHARAN AND LEISHMAN 861

0.0

Pitching moment coefficient / rad.

{7 :
L R [, Approx, M=0.3
20,3 e 277 Exact, M=0.3 }.L
— — - Approx, M= 0.5
——Exact, M=05
0.4 i S
0 0.1 0.2 0.3 04 0.5
a) Distance traveled in semi-chords, S
.00 b !
8 —— Approx, M = 0.3
E ----- Approx, M = 0.5
& -01 :
o
= ;
[}] d
8 4
< -0.2
[¢] R
£ B
Q .
3 ol
o -03 =
£
=
£
o
-0.4
0 5 10 15
b) Distance traveled in semi-chords, S

Fig. 5 Indicial airfoil moment because of flap rate at M = 0.3
and 0.5: a) short values of time and b) for an extended time.

flap motion, it is necessary to use Duhamel superposition to
calculate the unsteady aerodynamic forces and moments using
the previously obtained indicial responses. As discussed pre-
viously, there are two commonly used approaches, namely, the
state—space formulation and the recursive formulation. In the
present article, the state—space form will be described, al-
though the corresponding recursive formulation is given in
Ref. 19.

Consider the lift response because of arbitrary flap deflection
in subsonic flow. Since the circulatory part of the indicial re-
sponse does not depend on the mode of forcing, the flap de-
flection angle and the pitch rate about the hinge can be com-

bined into a single term, §,,, where

8g = [(Fuoblm) + (bF,,8/27V)) (46)

The state—space form for the circulatory part of the unsteady
lift because of the flap motion can then be written as

l:zn(t):l - 02V 2 1 )
0] ~bb, (—) B~ + by (—V> B
(% C
x [z‘(’) + [(1)] Beo(1) (47)

Zz(t ) ]

with the output equation

x| (2\/)2 \ <2v> 2]
Cuv®y=— (b)) |— ) B (Aby + Aby) | — | B
B | c c

Zl([)—
X l:Zz(t)_ (48)

Note that the coefficients A;, by, etc., as given by Eq. (19), are
defined in Refs. 20 and 23.
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Fig. 6 Indicial hinge moment because of a) flap displacement and
b) flap rate at M = 0.3 and 0.5.

It was noted earlier that the circulatory moments approach
their steady-state values in a very short period, and these can
be written in state—space form as

(1) = —QVIObBz(1) + 8,0 (49)
with the output equation
Cu(® = (W B BZ2VIc)zs(H) (50)
In this case &, (1) is given by

F, + FIO
8o, (D) = — (W)

_[2F - 2F, ~ @e + DF, + F, | (& .
8B Vv
A similar approach for the hinge moment results in
24(t) = —(2VIC)b:Bza(2) + By, (D) (52)
with the output equation
#(1) = (1 B)bs B (2VIe)za(1) (33)
and where in this case
Fs — FuFyo + FpFy
Ogs, (D) = — 8
as, (1) ( 2B )
_ | FulFe = 2F) &) 54)
473 v

Recall that the noncirculatory lift and moment components
also have a time—history effect in subsonic compressible flow.
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Also, their effects cannot be combined and must be considered
separately since their respective loadings are governed by dif-
ferent time-constants.

The noncirculatory parts of the unsteady lift, airfoil moment,
and hinge moment from arbitrary flap deflection &(z) can be
written as

Z5() = 8(t) — .7 50 CyD) = ACy(S =0, M)zs()  (55)

Ze(t) = 8(8) — ! z26(®), Cu (D) =ACu(S=0,M)i(r) (56)
Ky, T, /

Z(1) = &(1) — KIT_ (D, Cu(®=AC,(S=0, M) (57)

where ACy (S = 0, M), ACy,(S = 0, M), and AC, (S = 0, M)
are the initial values of the respective indicial responses as
given previously.

Similarly, the noncirculatory lift, airfoil moment, and hinge
moment because of arbitrary flap rate about the hinge 8(r) can
be written as

L bde 1 Do B ,
Z(1) = v Ko, (), Crn() = ACy(S =0, M)zs(t)  (58)
o 8(t)c _ ; B _ .
(1) = v KT, (), Cig(t) = AC, (S =0, M)Z(r)  (59)
5t 1
Zio(8) = LV)E - mzm(l% Ciy() = ACy(S=0,M)z(t)  (60)

Flap Effectiveness

The preceding analysis applies to flaps that are 100% effi-
cient; that is, there is no loss of flap effectiveness in the cre-
ation of aerodynamic loads because of viscous effects. In prac-
tice, a trailing-edge flap may operate in a relatively thick
turbulent boundary layer. Also, the presence of the flap hinge
produces a locally adverse pressure gradient, and tends to
thicken the boundary layer with the application of flap deflec-
tion. This will alter the effective flap camber, and reduce the
flap effectiveness for a given flap deflection angle.”’ In addi-
tion, the influence of the flap hinge geometry, and the possi-
bility of a gap at the hinge, leads to additional viscous effects
that may adversely alter the relationship between the flap de-
flection angle and the aerodynamic forces and moments.”

To a first order, it is possible to account for such effects by
the application of flap effectiveness coefficients. Since it is
likely that the lift, moment, and hinge moment will be influ-
enced by different amounts by the application of a flap, each
component of the loading must be considered separately. Flap
effectiveness coefficients can be derived most accurately by
empirical means, but only on the basis of steady flow consid-
erations; that is, based only on circulatory effects and with
regard to measurements of the static aerodynamic coefficients
with flap angle and gap size. Therefore, it is possible to write
the actual aerodynamic forces and moments as the linear the-
ory values multiplied by constant terms, ey, &4, and &y, where
these apply to the lift force, moment, and hinge moment re-
spectively. In practice, these values may range in value from
close to unity to about 0.5, and may be a function of Mach
number. As shown later, in the present work the values for
these coefficients have been estimated from the quasisteady
data of Ref. 33.

Unsteady Drag

The unsteady drag is of considerable importance in rotor-
craft work. The calculation of the unsteady drag in subsonic

compressible flow is somewhat involved, yet can be achieved
following a procedure first outlined for the incompressible case
by Garrick.” When resolved in a space-fixed coordinate sys-
tem, the pressure drag can be written as

Cp = (Cya + Cp6) — Cs 1)

where Cj is the leading-edge suction force. For the subsonic
case, this is

Cs = QmIB)A; (62)

where C is the force coefficient on the control surface, and
A, is the leading term in the pressure distribution as given by
quasisteady, thin airfoil theory, i.e.,

ac _, 0.
Ap = ar + | — + cos e =X
2V /) T

N (@) (‘\/l — e — e cos“‘e)
eff

|4 27 (63)

The effective AOA pitch rate, flap deflection, and flap rate are
given by

@y = Ciy PR (&cl2V)r = C B2 (64)

ur = C5,BI2Fyg  (8¢/V)r = 2C 3, BIF s (65)

where Cy , Cy., Cy, and Cy; are the circulatory components
of the unsteady lift from the AOA, pitch rate, flap deflection,
and flap rate, respectively.

Again, the effects of viscosity enter into the problem, even
at low AOAs, since the effects of finite airfoil thickness tend
to reduce the maximum attainable leading-edge suction. This
can be accounted for by the application of a leading-edge suc-
tion recovery factor 7, which is multiplied with the theoretical
value of C; (Ref. 35). The net effect is an increase in quasi-
steady pressure drag proportional to & at any given AOA.

The flap force coefficient can be split into flap force coef-
ficients because of individual modes of forcing, viz., a, @, 8,
and 6. Furthermore, these coefficients can be resolved into the
circulatory and noncirculatory components. Their initial and
final values are

2(1 — e)

ACH(S = 0. M) = =7 Aa (66)

_ B (I —e2 + e ac
ACH(S = 0. M) = ——— 2= A ( v) (67)
AC (S = 0. M) = 2L =9 45 (68)

: M
o = L9, (%
ACH(S = 0. M) = 2 A <v> (69)
AC(S = o, M) = 22 pq (70)
oy 2y (e

AC S === M) = =37 & <2V> (7H

2F. f -
- 20F 10 + 2(1 e) AS
B3

ACr(S = =, M) (72)
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ACr(S =0, M) =

Folfiu £ VU = Y1 Z ) (§> (73)

278 v

The evaluation of the noncirculatory time constants for the
flap force coefficients require the exact knowledge of the total
response for small values of time. The flap force coefficients
from the indicial airfoil motion can be obtained directly by the
integration of Egs. (29) and (30) over the flap region. The
resulting time constants can be written as

T (M, ¢) = <i> Tr =(1—e)

2V
2 -1 c
X [(1 — M) + 2F50M? 2 A,-b,] (;)
=K (M, e)T, (74)
T, (M, e) = ({;) T;, = (1_—6)2(2+_e)
X [2(1 — M) + 4FBM* Z A,-b,] (5—)
=K, M, )T, (75)

To evaluate the time constants because of the flap motion,
the exact expression for the flap force coefficient cannot be
obtained using the reverse flow theorems. As an alternative,
the exact expression for the normal force coefficient can be
used. This can be justified since the initial values of the indicial
response of the flap force and the normal force are equal for
flap motion. The time constants can be writien as

Tr (M. e)=(1 — ey {77'(1 — M) + 2[FxF,

e N T e
+ 4 - MM ZA[b,} (a>

5

c . ‘
= ('2_‘;> ng = KFB(Mv e, (76)

TF‘;(M’ e) :(_1___2_3)_1T {77(1 - MY —e) + [F 1 Fy

5

+ V- - elpM Y, A,-b,} <3>

c
= (ﬁ) T;,g = Kri(M, e)T; an
For an arbitrary combination of airfoil and flap motions, the
flap force can be calculated as before. Once the flap force
coefficient is known, the drag can be computed using Eq. (61).
Further details are given in Ref. 19.

Results and Discussion

Experiments on airfoils with time-dependent flap motions
are relatively rare. However, Drescher'” has measured the time-
dependent lift on an airfoil during impulsive motion of a trail-
ing-edge flap. The unsteady surface pressures on an airfoil
were measured during a ramp (8 = const) motion of the flap,
and were also compared to incompressible unsteady thin airfoil
theory. Some of Drescher’s results are reproduced in Ref. 36.

The present theory has been compared with Drescher’s
measurements, and a selection of results are shown in Fig. 7
with the remainder of the results in Ref. 19. In the test con-
ditions shown here the airfoil was maintained at a constant
AOA of @ = —5 deg (to avoid flow separation), while the flap

was displaced from 0 to 15 deg at a nominally constant rate.
The two cases shown in Fig. 7 are for 6c/V = 0.048 and
6c¢/V = 0.194. The flap motion time —history was digitized from
Ref. 13 and used as an input to the aerodynamic model.

Note that immediately after the flap motion starts, the non-
circulatory loads dominate the loading, and the normal force
decays quickly after the flap motion has stopped. As explained
previously, this is because the noncirculatory terms decay ex-
tremely rapidly after the input is terminated. On the other hand,
at these early times the circulatory loadings have not yet had
sufficient time to buildup. The combination of the decay of
the noncirculatory loading and the slow buildup of the circu-
latory loading lead to a local minimum in the total normal
force just after the cessation of the flap motion. After this time,
the circulatory loads dominate and the normal force finally
reaches its asymptotic value after about 20 semichords of air-
foil travel. The agreement of the theory with the experimental
data is quite good, and lends considerable support to the va-
lidity of the model.

Experimental results for oscillating flap motion on a NACA
64A006 airfoil were measured by Tijdeman and Schippers™
and Zwaan.”” The main emphasis in this work was for the high
subcritical and transonic flow cases, but some of the results
are given for shock-free flow and weak transonic conditions.
Under these conditions nonlinear effects are relatively mild,
and the results can be expected to provide a useful basis for
comparison with the present theory. Some additional results
for an oscillating flap on a NLR 7301 airfoil are given by
Zwaan,*® although these data are more limited in scope.

From the indicial response equations given previously, the
airloads to a particular harmonic motion of the flap can be
derived in closed form by means of Laplace transforms. While
the algebraic manipulations are somewhat lengthy, explicit ex-
pressions can be readily obtained for the lift, moment, and
hinge moment on the airfoil for a prescribed harmonic forcing
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Fig. 7 Comparison of theory with Drescher’s experiment for im-
pulsive flap deflection. Low rate, ac/V = 0.048 and high rate, oc/
V = 0.194.
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as a function of flap frequency and Mach number."”” This also
provides a check of the aerodynamic approximations indepen-
dently of any numerical integration of the state equations.

Typical computed results for an oscillatory flap motion are
shown in Figs. 8 and 9. The flap was 25% of the airfoil chord,
i.e., e = 0.5, and the amplitude of the oscillation at each test
point was about 2.5 deg with a mean airfoil AOA of 0 deg.
The results in Figs. 8 and 9 are presented as real (in-phase)
and imaginary (in-quadrature) parts, which are normalized by
the flap amplitude in the same manner used in Ref. 33, for a
given physical frequency and over a range of Mach numbers.
Note, therefore, that in these plots the reduced frequency varies
as a function of Mach number. Also, the maximum reduced
frequency at M = 0.7 is about 0.3, which is high enough so
that the noncirculatory terms become significant. Unfortu-
nately, the same range of measurements are not available at
all four oscillation frequencies (f = 0. 30, 90, and 120 Hz),
however, the range of test conditions are still wide enough to
cover the range of Mach numbers and reduced frequencies
typical of those found on rotorcraft.

For steady conditions (f = 0), the lift, moment, and hinge
moment all showed excellent agreement with the measure-
ments. Here, there is no unsteady effect, and so the imaginary
parts of the response are identically zero. A flap lift effective-
ness of 68% was found to provide good agreement with the
real part of the lift response at f = 0, and this value was as-
sumed constant over the entire Mach number and frequency
range. As shown in Fig. 8 with increasing frequency there is
a decrease in the magnitude of the real part of the lift response
over the whole Mach number range, with a corresponding in-
crease in the magnitude of the imaginary part. Generally, this
corresponds to an increase in the phase lag of the lift with
respect to the flap forcing. The agreement of the theory with
the test data is seen to be good over most of the conditions.

Figure 9 shows that the real part of the airfoil (one-quarter-
chord) moment from the flap motion deviates little from the
quasisteady result. This is expected, since an examination of
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the relevant equations when written in the frequency domain
show that the real part is dominated by the circulatory part of
the moment, which is almost quasisteady in nature. A flap
effectiveness of 96% was found to be applicable for this com-
ponent of the loading, which again, was held constant over the
entire Mach number and frequency range. The noncirculatory
part of the moment, however, while relatively small in mag-
nitude, significantly influences the phase of the response. At
low Mach numbers, the moment leads the flap forcing, yet this
slowly changes to a phase lead as the Mach number increases
through about 0.8. This behavior is also shown in the experi-
mental data, and the theory compares quite favorably with the
data for all of the various conditions. The incompressible the-
ory will not predict this behavior because a phase lead is al-
ways obtained because of the apparent mass terms. These dif-
ferences between the incompressible and subsonic theory arise
because in reality pressure perturbations propagate through the
flow at the local speed of sound. At higher flap frequencies,
even when the freestream Mach number is low, the distur-
bances do not propagate quickly enough relative to the flap
motion for the flow to be considered incompressible. Figure 9
shows that there is some deviation between the theory and test
data at the highest Mach numbers and flap frequencies, but
bearing in mind that some degree of nonlinear behavior would
be expected here, the agreement obtained is still good. For
maximum fidelity, it might be possible to correct the theory
by using a mean aerodynamic center location as a function of
Mach number; however, this is outside the scope of the present
work.

The flap hinge moment is probably the most difficult quan-
tity to predict accurately since it is sensitive to viscous effects.
The flap operates in the turbulent boundary layer near the trail-
ing-edge of the airfoil and this boundary layer is strongly in-
fluenced by the local geometry and pressure gradients pro-
duced near the flap hinge. For the present work a hinge
moment effectiveness of 68% was inferred from the measured
quasisteady (f = 0) aerodynamic data. As shown in Fig. 10
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Fig. 8 Comparison of theory with experiment for the unsteady lift vs Mach number for flap oscillation frequencies of 0, 30, 90, and

120 Hz.
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Fig. 9 Comparison of theory with experiment for the unsteady airfoil moment vs Mach number for flap oscillation frequencies of 0, 30,

90, and 120 Hz.
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the real part of the hinge moment is only weakly affected by
flap frequency since, like the airfoil moment, the real part of
the flap hinge moment is dominated by the circulatory loads.
However, the imaginary part of the hinge moment is consid-
erably more sensitive, this being dominated by the noncircu-
latory terms and considerably more so than the airfoil (one-
quarter-chord) pitching moment discussed previously. Note
that the effect of increasing flap frequency is to produce an
increasing phase lead over the entire Mach number range. The
agreement of the theory with the test data over the entire range
is excellent, even in the transonic range where nonlinear ef-
fects might be expected. Overall, the results shown in Figs. 8
and 9 tend to confirm aerodynamic linearity over the test con-
ditions made available in Ref. 33. However, further measure-
ments at higher flap deflection amplitudes and/or mean AOAs
would be required to fully explore the limitations of the un-
steady linear theory for general use.

Another, and perhaps more intuitive, way of looking at these
data is in the time domain. This is done by integrating the state
equations (given previously) with respect to time using a stan-
dard ordinary differential equation solver. Typical results are
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shown in Fig. 11 for two conditions, one at the lowest Mach
number of 0.5, and the other for M = 0.748. Also included in
these plots are the incompressible'' results, with the steady-state
lift—curve—slope corrected by the Glauert factor 1/8. When
plotted vs flap displacement angle, the lift exhibits a character-
istic elliptical loop, which is similar to that obtained on an airfoil
oscillating in AOA. Note that in Fig. 11 the lift loops are cir-
cumvented in a counterclockwise direction, corresponding to a
phase lag. At higher flap frequencies, the lift can develop a
phase lead as the noncirculatory terms begin to dominate the
solution. However, as shown previously, the effects of increas-
ing freestream Mach number also tend to increase the circula-
tory lag, which means that the lift mostly lags the flap forcing
over the range of conditions typically encountered in practice.
This is shown for the M = 0.748 case in Fig. 11, where despite
the higher reduced frequency, the phase lag is considerably
greater than for the M = 0.5 case. Note that the incompressible
results do not correlate as well with the experimental results.
The incompressible theory does not predict the phasing cor-
rectly, and this is more pronounced at the higher Mach number,
which is more typical of the rotor environment.
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HARIHARAN AND LEISHMAN 867

Figure 11 shows that the airfoil moment behaves in an al-
most quasisteady manner, as discussed previously with regard
to Fig. 9. Here, the moment loops are circumvented in a clock-
wise sense, but the phase lead is small. In general, there is a
weak effect of both Mach number and frequency on the un-
steady airfoil moment because of flap deflection, and would
be adequately predicted in the general case if quasisteady con-
ditions were assumed. On the other hand, the flap hinge mo-
ment shows a considerably more powerful unsteady effect.
Here, there is a phase lead between the response and the forc-
ing, giving loops that are circumvented in a clockwise direc-
tion. Again, this is because of the noncirculatory terms, which
play a very important role in the response at higher flap fre-
quencies. Clearly, these results dictate the use of a compress-
ible flow theory to model the quantitative effects on the air-
loads.

Concluding Remarks

Indicial aerodynamic functions have been derived for trail-
ing-edge flap displacement and flap angular rate motion in sub-
sonic compressible flow. Exact values of the indicial normal
force (lift) and moment about the one-quarter-chord were de-
rived by using the aerodynamic reverse flow theorems in con-
junction with the exact pressure distributions computed for the
flat-plate case. These results were used to help obtain complete
asymptotic approximations for the respective indicial re-
sponses. Approximations to the indicial response were also
derived for the hinge moments. Thereafter, the normal force,
airfoil moment, and hinge moment airloads because of arbi-
trary flap motion were obtained in state—space form.

Validation of the method has been conducted with experi-
mental data for time-dependent (ramp) and oscillating flap mo-
tion at various subsonic Mach numbers. The agreement was
found to be good, although some minor discrepancies in the
predictions were noted at the higher Mach numbers. While
nonlinear effects are likely responsible for these differences, it
is clear that, bearing in mind the relative simplicity of the
present method, the approach provides a good estimate of the
aerodynamic forces and moments because of the unsteady de-
flection of a flap. Furthermore, these predictions appear su-
perior to those obtained with classical unsteady incompressible
theory, especially at higher freestream Mach numbers and re-
duced frequencies. However, further measurements at higher
flap deflection amplitudes and/or mean AOAs are obviously
required to fully explore the limitations of the present theory
for more general use in a rotor analysis.
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